xml地图|网站地图|网站标签 [设为首页] [加入收藏]
来自 科技中心 2019-05-06 09:27 的文章
当前位置: 7276.com > 科技中心 > 正文

我校教授非晶半导体纳米材料研究获重要进展7

通过人工组分调控和设计,实现异质锗硅超晶格结构是探索新一代光电器件应用的基础。而在准一维的纳米线沟道中,能同时叠加组分(Compositional)和形貌(Geometric)变化对能带的调控能力,有望建立更为高效的物性调控新技术和新思路。传统锗硅异质超晶格纳米线制备依赖于交替气氛供给的VLS生长模式,由于背景环境中的组分切换迟滞(reservoir)效应,难以获得非常“锐利”的组分调控。每个组分周期至少需要两次生长环境切变(switching)和清洗过程,故而生长制备成本高且非常缓慢。此外,竖直生长超晶格纳米线难以实现规模定位集成,这也为平面工艺应用带来巨大困难。

近日,我校化学科学与工程学院杨金虎教授的研究工作以“Amorphous Semiconductor Nanowires Created by Site-Specific Heteroatom Substitution with Significantly Enhanced Photoelectrochemical Performance”为题发表于国际知名期刊《ACS Nano》上,课题组博士生贺婷同学为论文的第一作者、祖连海同学为共同第一作者。《ACS Nano》2015年的影响因子是13.3。   半导体纳米材料因特殊的光电性质及在能源和环境等领域中的巨大潜力而备受关注。目前,研究所涉及的半导体纳米材料大都是晶态的。相对而言,非晶半导体材料理论上在光电器件方面具有很多优势,如更高的比表面积、更高的表面活性和更高的光利用效率等。但非晶半导体纳米材料因合成困难,研究非常有限,这大大限制了非晶半导体材料的发展。   

7276.com,南京大学电子科学与工程学院余林蔚教授课题组,首次提出并尝试了一种全新的思路:将锗硅纳米线组分调控的切换任务,交付给在平面上滚动前进的纳米金属液滴来完成。例如,利用低熔点金属铟作为催化颗粒,以非晶a-Si/a-Ge叠层作为前驱体,铟颗粒在平面运动中在前端吸收非晶层并在后端淀积出晶态的纳米线结构。当液滴运动速度足够高的时候,由于本身“滚动”导致的内部输运涡旋作用,可自发地调制对底层a-Si/a-Ge叠层的吸收深度,在平面“动态跳跃”过程中,实现周期性、形貌和组分同步调制的嵌套异质锗-硅超晶格岛链纳米线(Ge/Si hetero island-chain nanowires, hiNWs)结构。实验发现,其异质锗硅纳米线结构的组分、周期和直径等关键参数均可通过非晶叠层设计和液滴大小控制有效调节。其中Ge成分在Ge/Si异质界面上可在几个纳米内完成75%Ge的自发转变,不需要任何外界人工调控干预。同时,锗硅超晶格纳米线可以被精确定位在指定区域,为后续电学接触和器件探索带来巨大方便。此项研究为探索新型纳米液滴动态物性调控手段,实现高效光电功能结构和器件应用奠定了关键基础。

7276.com 1

7276.com 2

  杨金虎教授课题组以宽禁带Zn2GeO4为研究对象,发展了一种液相离子交替沉积方法,在制备ZGO纳米线的同时实现了异原子在ZGO晶胞中不同位置的定点取代。当取代Zn位置时,因为SiIIO4四面体与ZnO4四面体在键长和键角参数上的很大差异,导致了取代后的纳米线成键网络扭曲,破坏了原ZGO晶体的有序晶格结构,形成了非晶的Zn1.7Si0.3GeO4纳米线。而当Si取代Ge位置时,因为SiIVO4四面体与GeO4四面体在键长和键角参数上差异较小,不影响有序晶格结构,形成了晶态的Zn2(GeO4)0.88(SiO4)0.12纳米线。通过密度泛函数计算表明,Si取代后,ZSGO的禁带宽度比取代前ZGO减小,而ZGSO比取代前的禁带宽度增大。因非晶ZSGO纳米线具有更好的光吸收能力、更高的比表面积和反应活性,其在光电催化制氢中表现出了更好的效率。该研究为非晶半导体纳米材料的可控制备和能带结构调控提供了一个新的方法。   

图1. 动态跳跃液滴诱导生长异质锗-硅超晶格岛链纳米线结构。

7276.com 3

本文由7276.com发布于科技中心,转载请注明出处:我校教授非晶半导体纳米材料研究获重要进展7

关键词: